Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
J Pers Med ; 11(3)2021 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-33804706

RESUMO

Patient material from rare diseases such as very early-onset inflammatory bowel disease (VEO-IBD) is often limited. The use of patient-derived induced pluripotent stem cells (iPSCs) for disease modeling is a promising approach to investigate disease pathomechanisms and therapeutic strategies. We successfully developed VEO-IBD patient-derived iPSC lines harboring a mutation in the IL-10 receptor ß-chain (IL-10RB) associated with defective IL-10 signaling. To characterize the disease phenotype, healthy control and VEO-IBD iPSCs were differentiated into macrophages. IL-10 stimulation induced characteristic signal transducer and activator of transcription 3 (STAT3) and suppressor of cytokine signaling 3 (SOCS3) downstream signaling and anti-inflammatory regulation of lipopolysaccharide (LPS)-mediated cytokine secretion in healthy control iPSC-derived macrophages. In contrast, IL-10 stimulation of macrophages derived from patient iPSCs did not result in STAT3 phosphorylation and subsequent SOCS3 expression, recapitulating the phenotype of cells from patients with IL-10RB deficiency. In line with this, LPS-induced cytokine secretion (e.g., IL-6 and tumor necrosis factor-α (TNF-α)) could not be downregulated by exogenous IL-10 stimulation in VEO-IBD iPSC-derived macrophages. Correction of the IL-10RB defect via lentiviral gene therapy or genome editing in the adeno-associated virus integration site 1 (AAVS1) safe harbor locus led to reconstitution of the anti-inflammatory response. Corrected cells showed IL-10RB expression, IL-10-inducible phosphorylation of STAT3, and subsequent SOCS3 expression. Furthermore, LPS-mediated TNF-α secretion could be modulated by IL-10 stimulation in gene-edited VEO-IBD iPSC-derived macrophages. Our established disease models provide the opportunity to identify and validate new curative molecular therapies and to investigate phenotypes and consequences of additional individual IL-10 signaling pathway-dependent VEO-IBD mutations.

2.
Stem Cell Reports ; 11(3): 696-710, 2018 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-30100408

RESUMO

Induced pluripotent stem cell (iPSC)-derived hematopoietic cells represent a highly attractive source for cell and gene therapy. Given the longevity, plasticity, and self-renewal potential of distinct macrophage subpopulations, iPSC-derived macrophages (iPSC-Mφ) appear of particular interest in this context. We here evaluated the airway residence, plasticity, and therapeutic efficacy of iPSC-Mφ in a murine model of hereditary pulmonary alveolar proteinosis (herPAP). We demonstrate that single pulmonary macrophage transplantation (PMT) of 2.5-4 × 106 iPSC-Mφ yields efficient airway residence with conversion of iPSC-Mφ to an alveolar macrophage (AMφ) phenotype characterized by a distinct surface marker and gene expression profile within 2 months. Moreover, PMT significantly improves alveolar protein deposition and other critical herPAP disease parameters. Thus, our data indicate iPSC-Mφ as a source of functional macrophages displaying substantial plasticity and therapeutic potential that upon pulmonary transplantation will integrate into the lung microenvironment, adopt an AMφ phenotype and gene expression pattern, and profoundly ameliorate pulmonary disease phenotypes.


Assuntos
Subunidade beta Comum dos Receptores de Citocinas/genética , Células-Tronco Pluripotentes Induzidas/citologia , Macrófagos Alveolares/citologia , Macrófagos Alveolares/transplante , Proteinose Alveolar Pulmonar/terapia , Animais , Células Cultivadas , Deleção de Genes , Hematopoese , Camundongos , Camundongos Knockout , Proteinose Alveolar Pulmonar/genética , Proteinose Alveolar Pulmonar/patologia
3.
Stem Cell Reports ; 7(2): 292-305, 2016 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-27453007

RESUMO

Induced pluripotent stem cells (iPSCs) represent an innovative source for the standardized in vitro generation of macrophages (Mφ). We here describe a robust and efficient protocol to obtain mature and functional Mφ from healthy as well as disease-specific murine iPSCs. With regard to morphology, surface phenotype, and function, our iPSC-derived Mφ (iPSC-Mφ) closely resemble their counterparts generated in vitro from bone marrow cells. Moreover, when we investigated the feasibility of our differentiation system to serve as a model for rare congenital diseases associated with Mφ malfunction, we were able to faithfully recapitulate the pathognomonic defects in GM-CSF signaling and Mφ function present in hereditary pulmonary alveolar proteinosis (herPAP). Thus, our studies may help to overcome the limitations placed on research into certain rare disease entities by the lack of an adequate supply of disease-specific primary cells, and may aid the development of novel therapeutic approaches for herPAP patients.


Assuntos
Subunidade beta Comum dos Receptores de Citocinas/deficiência , Células-Tronco Pluripotentes Induzidas/citologia , Macrófagos/citologia , Proteinose Alveolar Pulmonar/metabolismo , Proteinose Alveolar Pulmonar/patologia , Animais , Biomarcadores/metabolismo , Diferenciação Celular/efeitos dos fármacos , Subunidade beta Comum dos Receptores de Citocinas/metabolismo , Modelos Animais de Doenças , Fator Estimulador de Colônias de Granulócitos e Macrófagos/farmacologia , Hematopoese/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos Endogâmicos C57BL , Monócitos/efeitos dos fármacos , Monócitos/metabolismo
4.
Eur J Immunol ; 46(7): 1656-68, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27130185

RESUMO

Foxp3(+) regulatory T (Treg) cells play a pivotal role in maintaining immunological tolerance. Loss-of-function mutations in the Foxp3 gene result in multiorgan inflammation known as immunodysregulation, polyendocrinopathy, enteropathy, X-linked syndrome in humans and scurfy (Sf) disease in mice. While the impact of missing Treg cells on adaptive immune cells is well documented, their role in regulation of myeloid cells remains unclear. Here we report that Sf mice exhibit an altered composition of stem and progenitor cells, characterized by increased numbers of myeloid precursors and higher efficiency of macrophage generation ex vivo. The proportion of monocytes/macrophages in the bone marrow, blood, and spleen was significantly elevated in Sf mice, which was accompanied with tissue-specific monocyte expression of homing receptor and phagocytic activity. Sf mice displayed high levels of M-CSF and other inflammatory cytokines, including monocyte-recruiting chemokines. Adoptive transfer of WT CD4(+) cells and in vivo neutralization of M-CSF normalized frequencies of monocyte subsets and their progenitors and reduced high levels of monocyte-related cytokines in Sf mice, while Treg cell transfer to RAG2(-/-) mice had no effect on myelopoiesis and monocyte/macrophage counts. Our findings illustrate that deregulated myelopoiesis in Sf mice is mainly caused by the inflammatory reaction resulting from the lack of Treg cells.


Assuntos
Fatores de Transcrição Forkhead/deficiência , Macrófagos/imunologia , Macrófagos/metabolismo , Monócitos/imunologia , Monócitos/metabolismo , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Transferência Adotiva , Animais , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Medula Óssea/metabolismo , Medula Óssea/patologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Contagem de Células , Linhagem da Célula/genética , Linhagem da Célula/imunologia , Citocinas/metabolismo , Expressão Gênica , Antígenos de Histocompatibilidade Classe II/genética , Antígenos de Histocompatibilidade Classe II/imunologia , Imunofenotipagem , Mediadores da Inflamação/metabolismo , Fator Estimulador de Colônias de Macrófagos/metabolismo , Camundongos , Camundongos Knockout , Células Progenitoras Mieloides/citologia , Células Progenitoras Mieloides/metabolismo , Mielopoese/genética , Mielopoese/imunologia , Baço/imunologia , Baço/metabolismo , Baço/patologia
5.
J Exp Clin Cancer Res ; 34: 148, 2015 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-26651614

RESUMO

BACKGROUND: Hematologic toxicity represents a major side effect of cytotoxic chemotherapy frequently preventing adequately dosed chemotherapy application and impeding therapeutic success. Transgenic (over)expression of chemotherapy resistance (CTX-R) genes in hematopoietic stem- and progenitor cells represents a potential strategy to overcome this problem. To apply this concept in the context of acute myeloid leukemia and myelodysplasia, we have investigated the overexpression of the multidrug resistance 1 (MDR1) and the cytidine deaminase (CDD) gene conferring resistance to anthracyclines and cytarabine (Ara-C), the two most important drugs in the treatment of these diseases. METHODS: State-of-the-art, third generation, self-inactivating (SIN) lentiviral vectors were utilized to overexpress a human CDD-cDNA and a codon-optimized human MDR1-cDNA corrected for cryptic splice sites from a spleen focus forming virus derived internal promoter. Studies were performed in myeloid 32D cells as well as primary lineage marker negative (lin(-)) murine bone marrow cells and flow cytometric analysis of suspension cultures and clonogenic analysis of vector transduced cells following cytotoxic drug challenge were utilized as read outs. RESULTS: Efficient chemoprotection of CDD and MDR1 transduced hematopoietic 32D as well as primary lin(-) cells was proven in the context of Ara-C and anthracycline application. Both, CTX-R transduced 32D as well as primary hematopoietic cells displayed marked resistance at concentrations 5-20 times the LD50 of non-transduced control cells. Moreover, simultaneous CDD/MDR1 gene transfer resulted in similar protection levels even when combined Ara-C anthracycline treatment was applied. Furthermore, significant enrichment of transduced cells was observed upon cytotoxic drug administration. CONCLUSIONS: Our data demonstrate efficient chemoprotection as well as enrichment of transduced cells in hematopoietic cell lines as well as primary murine hematopoietic progenitor cells following Ara-C and/or anthracycline application, arguing for the efficacy as well as feasibility of our approach and warranting further evaluation of this concept.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Citidina Desaminase/genética , Células-Tronco Hematopoéticas/efeitos dos fármacos , Leucemia Mieloide Aguda/genética , Síndromes Mielodisplásicas/genética , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/biossíntese , Animais , Antraciclinas/administração & dosagem , Citarabina/administração & dosagem , Citidina Desaminase/biossíntese , DNA Complementar/biossíntese , DNA Complementar/genética , Regulação Leucêmica da Expressão Gênica/efeitos dos fármacos , Técnicas de Transferência de Genes , Vetores Genéticos , Humanos , Lentivirus/genética , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/patologia , Camundongos , Síndromes Mielodisplásicas/tratamento farmacológico , Síndromes Mielodisplásicas/patologia , Sítios de Splice de RNA/genética
6.
Stem Cell Reports ; 4(2): 282-96, 2015 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-25680479

RESUMO

Interleukin-3 (IL-3) is capable of supporting the proliferation of a broad range of hematopoietic cell types, whereas granulocyte colony-stimulating factor (G-CSF) and macrophage CSF (M-CSF) represent critical cytokines in myeloid differentiation. When this was investigated in a pluripotent-stem-cell-based hematopoietic differentiation model, IL-3/G-CSF or IL-3/M-CSF exposure resulted in the continuous generation of myeloid cells from an intermediate myeloid-cell-forming complex containing CD34(+) clonogenic progenitor cells for more than 2 months. Whereas IL-3/G-CSF directed differentiation toward CD45(+)CD11b(+)CD15(+)CD16(+)CD66b(+) granulocytic cells of various differentiation stages up to a segmented morphology displaying the capacity of cytokine-directed migration, respiratory burst response, and neutrophil-extracellular-trap formation, exposure to IL-3/M-CSF resulted in CD45(+)CD11b(+)CD14(+)CD163(+)CD68(+) monocyte/macrophage-type cells capable of phagocytosis and cytokine secretion. Hence, we show here that myeloid specification of human pluripotent stem cells by IL-3/G-CSF or IL-3/M-CSF allows for prolonged and large-scale production of myeloid cells, and thus is suited for cell-fate and disease-modeling studies as well as gene- and cell-therapy applications.


Assuntos
Técnicas de Cultura de Células , Diferenciação Celular , Granulócitos/citologia , Células-Tronco Pluripotentes Induzidas/citologia , Macrófagos/citologia , Diferenciação Celular/efeitos dos fármacos , Terapia Baseada em Transplante de Células e Tecidos/métodos , Fator Estimulador de Colônias de Granulócitos/farmacologia , Fator Estimulador de Colônias de Granulócitos e Macrófagos/farmacologia , Granulócitos/metabolismo , Humanos , Imuno-Histoquímica , Imunofenotipagem , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/metabolismo , Interleucina-3/farmacologia , Macrófagos/metabolismo , Fenótipo
7.
Sci Transl Med ; 6(250): 250ra113, 2014 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-25143363

RESUMO

Hereditary pulmonary alveolar proteinosis (herPAP) is a rare lung disease caused by mutations in the granulocyte-macrophage colony-stimulating factor (GM-CSF) receptor genes, resulting in disturbed alveolar macrophage differentiation, massive alveolar proteinosis, and life-threatening respiratory insufficiency. So far, the only effective treatment for herPAP is repetitive whole-lung lavage, a merely symptomatic and highly invasive procedure. We introduce pulmonary transplantation of macrophage progenitors as effective and long-lasting therapy for herPAP. In a murine disease model, intrapulmonary transplanted macrophage progenitors displayed selective, long-term pulmonary engraftment and differentiation into functional alveolar macrophages. A single transplantation ameliorated the herPAP phenotype for at least 9 months, resulting in significantly reduced alveolar proteinosis, normalized lung densities in chest computed tomography, and improved lung function. A significant and sustained disease resolution was also observed in a second, humanized herPAP model after intrapulmonary transplantation of human macrophage progenitors. The therapeutic effect was mediated by long-lived, lung-resident macrophages, which displayed functional and phenotypical characteristics of primary human alveolar macrophages. Our findings present the concept of organotopic transplantation of macrophage progenitors as an effective and long-lasting therapy of herPAP and may also serve as a proof of principle for other diseases, expanding current stem cell-based strategies toward potent concepts using the transplantation of differentiated cells.


Assuntos
Transplante de Pulmão , Macrófagos/transplante , Proteinose Alveolar Pulmonar/terapia , Transplante de Células-Tronco , Animais , Diferenciação Celular , Pré-Escolar , Subunidade beta Comum dos Receptores de Citocinas/deficiência , Subunidade beta Comum dos Receptores de Citocinas/metabolismo , Humanos , Camundongos , Fenótipo , Proteinose Alveolar Pulmonar/patologia , Fatores de Tempo
8.
Biomaterials ; 35(25): 7204-13, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24875758

RESUMO

Notwithstanding recent successes, insertional mutagenesis as well as silencing and variegation of transgene expression still represent considerable obstacles to hematopoietic gene therapy. This also applies to O(6)-methylguanine DNA methyltransferase (MGMT)-mediated myeloprotection, a concept recently proven clinically effective in the context of glioblastoma therapy. To improve on this situation we here evaluate a SIN-lentiviral vector expressing the MGMT(P140K)-cDNA from a combined A2UCOE/PGK-promoter. In a murine in vivo chemoselection model the A2UCOE.PGK.MGMT construct allowed for significant myeloprotection as well as robust and stable selection of transgenic hematopoietic cells. In contrast, only transient enrichment and severe myelotoxicity was observed for a PGK.MGMT control vector. Selection of A2UCOE.PGK.MGMT-transduced myeloid and lymphoid mature and progenitor cells was demonstrated in the peripheral blood, bone marrow, spleen, and thymus. Unlike the PGK and SFFV promoters used as controls, the A2UCOE.PGK promoter allowed for sustained vector copy number-related transgene expression throughout the experiment indicating an increased resistance to silencing, which was further confirmed by CpG methylation studies of the PGK promoter. Thus, our data support a potential role of the A2UCOE.PGK.MGMT-vector in future MGMT-based myeloprotection and chemoselection strategies, and underlines the suitability of the A2UCOE element to stabilize lentiviral transgene expression in hematopoietic gene therapy.


Assuntos
Cromatina/química , Lentivirus/genética , O(6)-Metilguanina-DNA Metiltransferase/genética , Regiões Promotoras Genéticas , Animais , Antineoplásicos/farmacologia , Cromatina/genética , Clonagem Molecular , Variações do Número de Cópias de DNA , Feminino , Expressão Gênica , Terapia Genética , Vetores Genéticos , Guanina/análogos & derivados , Guanina/farmacologia , Células-Tronco Hematopoéticas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , O(6)-Metilguanina-DNA Metiltransferase/química , Fosfoglicerato Quinase/química , Fosfoglicerato Quinase/genética , Análise de Sequência de DNA , Transgenes
9.
Am J Respir Crit Care Med ; 189(2): 167-82, 2014 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-24279725

RESUMO

RATIONALE: Hereditary pulmonary alveolar proteinosis (hPAP) caused by granulocyte-macrophage colony-stimulating factor (GM-CSF) receptor α-chain (CSF2RA) deficiency is a rare, life-threatening lung disease characterized by accumulation of proteins and phospholipids in the alveolar spaces. The disease is caused by a functional insufficiency of alveolar macrophages, which require GM-CSF signaling for terminal differentiation and effective degradation of alveolar proteins and phospholipids. Therapeutic options are extremely limited, and the pathophysiology underlying the defective protein degradation in hPAP alveolar macrophages remains poorly understood. OBJECTIVES: To further elucidate the cellular mechanisms underlying hPAP and evaluate novel therapeutic strategies, we here investigated the potential of hPAP patient-derived induced pluripotent stem cell (PAP-iPSCs) derived monocytes and macrophages. METHODS: Patient-specific PAP-iPSCs were generated from CD34(+) bone marrow cells of a CSF2RA-deficient patient with PAP. We assessed pluripotency, chromosomal integrity, and genetic correction of established iPSC lines. On hematopoietic differentiation, genetically corrected or noncorrected monocytes and macrophages were investigated in GM-CSF-dependent assays. MEASUREMENTS AND MAIN RESULTS: Although monocytes and macrophages differentiated from noncorrected PAP-iPSCs exhibited distinct defects in GM-CSF-dependent functions, such as perturbed CD11b activation, phagocytic activity, and STAT5 phosphorylation after GM-CSF exposure and lack of GM-CSF uptake, these defects were fully repaired on lentiviral gene transfer of a codon-optimized CSF2RA-cDNA. CONCLUSIONS: These data establish PAP-iPSC-derived monocytes and macrophages as a valid in vitro disease model of CSF2RA-deficient PAP, and introduce gene-corrected iPSC-derived monocytes and macrophages as a potential autologous cell source for innovative therapeutic strategies. Transplantation of such cells to patients with hPAP could serve as a paradigmatic proof for the potential of iPSC-derived cells in clinical gene therapy.


Assuntos
Doenças Genéticas Ligadas ao Cromossomo X/terapia , Terapia Genética , Células-Tronco Pluripotentes Induzidas , Proteinose Alveolar Pulmonar/terapia , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/deficiência , Técnicas de Cultura de Células , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Pré-Escolar , Feminino , Doenças Genéticas Ligadas ao Cromossomo X/genética , Doenças Genéticas Ligadas ao Cromossomo X/metabolismo , Humanos , Macrófagos Alveolares/metabolismo , Modelos Biológicos , Monócitos/metabolismo , Proteinose Alveolar Pulmonar/genética , Proteinose Alveolar Pulmonar/metabolismo , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/genética , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/uso terapêutico , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética
10.
Neoplasia ; 15(3): 239-48, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23479503

RESUMO

Gene transfer of drug resistance (CTX-R) genes can be used to protect the hematopoietic system from the toxicity of anticancer chemotherapy and this concept recently has been proven by overexpression of a mutant O(6)-methylguaninemethyltransferase in the hematopoietic system of glioblastoma patients treated with temozolomide. Given its protection capacity against such relevant drugs as cytosine arabinoside (ara-C), gemcitabine, decitabine, or azacytidine and the highly hematopoiesis-specific toxicity profile of several of these agents, cytidine deaminase (CDD) represents another interesting candidate CTX-R gene and our group recently has established the myeloprotective capacity of CDD gene transfer in a number of murine transplant studies. Clinically, CDD overexpression appears particularly suited to optimize treatment strategies for acute leukemias and myelodysplasias given the efficacy of ara-C (and to a lesser degree decitabine and azacytidine) in these disease entities. This article will review the current state of the art with regard to CDD gene transfer and point out potential scenarios for a clinical application of this strategy. In addition, risks and potential side effects associated with this approach as well as strategies to overcome these problems will be highlighted.


Assuntos
Citidina Desaminase/genética , Técnicas de Transferência de Genes , Leucemia/genética , Leucemia/terapia , Animais , Antineoplásicos/farmacologia , Citarabina/farmacologia , Resistencia a Medicamentos Antineoplásicos/genética , Expressão Gênica , Terapia Genética/efeitos adversos , Células-Tronco Hematopoéticas/metabolismo , Humanos , Camundongos , Mielopoese/efeitos dos fármacos , Mielopoese/genética
11.
Cytotherapy ; 14(4): 451-60, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22242831

RESUMO

BACKGROUND AIMS: Drug-resistance genes have been explored as powerful in vivo selection markers in hematopoietic cell gene therapy, and cytidine deaminase (CDD) represents a particularly attractive candidate given the virtual absence of non-hematopoietic side-effects after low/intermediate dose application of the associated drug cytosine-arabinoside (Ara-C). METHODS: We investigated the in vivo selection potential of CDD overexpression and prolonged low/intermediate-dose Ara-C application in a murine model. Furthermore, non-transplanted mice were utilized to study Ara-C toxicity in different hematopoietic cell compartments. RESULTS: Significant protection of myelo- and thrombopoiesis and up to 6-fold in vivo enrichment of CDD-transduced hematopoietic cells was observed. Enrichment was most robust early after Ara-C application and was correlated with dosage and duration of chemotherapy. Enrichment remained significant for several weeks, indicating selection at the level of a progenitor population. This notion was supported by Ara-C toxicity studies, demonstrating profound hematotoxicity and a marked delay in hematopoietic recovery, specifically in the progenitor/stem cell compartment after low/intermediate-dose Ara-C. CONCLUSIONS: These data support the concept of CDD/Ara-C as a clinically applicable in vivo selection system in hematopoietic gene therapy. The data also demonstrate marked differences in hematotoxicity between alternative Ara-C dosing schemes and suggest thorough in vivo toxicity studies to optimize further Ara-C dosing en route to safe and stable enrichment of gene-corrected hematopoiesis.


Assuntos
Citarabina/farmacologia , Citidina Desaminase/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Animais , Citidina Desaminase/genética , Feminino , Terapia Genética , Transplante de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA